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A New Particle Filter Based Algorithm for Image Tracking 

 (Technical Final Report Submitted to Dr. Liyi Dai) 

 

Xinmin Liu (Graduate Student), Zongli Lin (PI) and Scott Acton (Co-PI) 

Charles L. Brown Department of Electrical and Computer Engineering 

University of Virginia 

Charlottesville, VA 22904-4743  

 

1. Summary of the Report 

We have developed a novel algorithm for tracking an object, such as the UAVs shown in Fig. 1, 

in a sequence of images. The development of such an algorithm is motivated by the idea behind 

the particle filter and the concept of feedback from control theory. We will thus temporarily refer 

to this algorithm as a particle filter with feedback (PFF) algorithm for image tracking. We will 

briefly describe our algorithm and compare its performance with some existing algorithms. This 

comparison indicates that the proposed tracking algorithm drastically outperforms the existing 

methods both in terms of tracking accuracy, robustness and tracking speed.  

 

2.  Existing Video Trackers 

The GVF snake tracker was developed by Ray et al. (2002). It captures the object to be tracked 

through minimizing an energy function, defined on the basis of internal energy, external energy, 

shape, size, position, and sampling of the contour. Under most circumstances, the snake tracker 

is able to successfully track a rolling object.  

The Monte Carlo tracker was developed by Cui et al. (2006). Based on the object movement 

information and the image intensity features, a specialized sample-weighting criterion is tailored 

to rolling object observed in vivo. In comparison with the snake-based trackers, as the noise 

intensity level increases, the performance of a snake tracker degrades more than that of the 

Monte Carlo tracker. More details on such a comparison can be found in Cui et al. (2006). 

 

   

                      Frame 1                                     Frame 31                                      Frame 61 

Fig. 1. Typical UAV images that represent typical targets in our research. 
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3. The Proposed Tracking Algorithm 

The development of the algorithm was motivated by the idea behind the particle filter and the 

concept of feedback in control theory. We first predict the leukocyte position using the 

movement information of the previous steps. Samples of particles are then generated around the 

predicted position. Unlike in the Monte Carlo tracker where samples are generated randomly, 

here samples are generated by gridding an area around the predicted position. The number and 

the density of the samples are adjusted based on the previous movement information. At each of 

these sample points, radial edge detection is applied to determine if the point is within the target 

boundary. Weighted average among the positions of those sample points detected to be within 

the target boundary will be the filtered position of the center of the target at the current image 

frame. The weighting for a sample point is assigned according to a normal distribution with 

respect to its distance from the predicted position. 

Various components of the algorithm are described in more detail as follows. 

3.1. Sample Generation 

Samples are generated around a predicted position of the target. We predict the target position 

using the movement information of previous steps. In the current stage, we still use the motion 

model of Cui et al. (2006).  The target position is predicted by  
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where ),( 1,1,  tctc yx  is the predicted target position in frame 1t , )ˆ,ˆ( ,, tctc yx  is the estimated 

position in frame t , and  and  are non-negative constants. In the 2
nd

 frame, when we don’t 

have three previous frames, we will use the filtered position of the previous frame. Similarly, in 

the 3
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 frames, we will use only the information of the previous 2 and 3 frames 

respectively. 

We will generate the samples by gridding within an ellipsoid that is centered at the predicted 

position, 
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where 7,4  ba . The number and density of samples are adjusted by the previous 

measurement information. Shown in Fig. 2 is an illustration of a set of samples. 
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Fig. 2. A set of samples generated around the predicted position. 
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3.2. Image Intensity Measurement 

Suppose ),( yx  is the position of the target center. By performing radial edge detection around 

),( yx , we can detect the target boundary. To do so, construct several line segments extending 

radially from ),( yx  with coordinates ))(),(( ,, klkl yx   (see Fig. 3),  
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where N  is the number of line segments, 1K  is the number of points on each line,   specifies 

the orientation of the line segment, and 1r  and 2r  are pre-specified values delimiting the length 

of the line segments.  

In Cui et al (2006), where the following one-dimensional edge detection operator is applied on 

each line segment, 

( ) ' ( 2) 2 ' ( 1) 2 ' ( 1) ' ( 2)e k I k I k I k I k            . 

Here we use a modified edge detection operator on each line segment 

  ),2(')1('2)1('2)2(')(  kIkIkIkIke   

where )(' kI   is the image intensity at point ))(),(( ,, klkl yx   obtained by bilinear interpolation. 

The corresponding coordinate, denoted as ),( ,, yx ee  , with the maximum )(ke , is the detected 

edge point for the orientation   for a bright target (or with the minimum )(ke  for a dark target). 

An example of the radial edge detection ( 8N ) is illustrated in Fig. 3. 

 

r1

r2

r

(c)  

Fig. 3. (a) Detected dark leukocyte edge;   (b) Detected bright leukocyte edge;  

(c) Detected vehicle edge. 
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3.3 Sample Weighting 

To ensure a sample is in the inside of a bright target, all ( ), 1,2, ,8e k k   , should larger than 

a statically determined threshold. Considering the effect of the noise and clutter and weak image 

intensity features, if 7 of ( ), 1,2, ,8e k k   , are larger than a threshold, we will assume that 

the sample is inside the target. Similarly, if 7 of ( ), 1,2, ,8e k k   , are smaller than a 

threshold, we consider the sample is inside a dark target. If a sample is inside a target, the sample 

weighting is set to be a nonzero number, otherwise, it is set to be zero.  
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3.4. Feedback in Image Processing 

The concept of feedback is followed throughout our algorithm development. For example, the 

adjustment of the threshold in image intensity measurement and the determination of the density 

and number of samples are all based on the previous step data.  

3.5.  Some Observations 

The success of tracking algorithm of Cui et al. (2006) is highly dependent on the accuracy of the 

predicted position of the target. If the target is a few pixels away from predicted position, the 

tracker will lose the target. The Cui et al. (2006) method also needs the target positions in the 

first two frames to initialize the process to make sure the predicted position is accurate. 

Our proposed tracker can track a target even when it is many pixels away from the predicted 

position. Also, we need only the target position in the first frame to begin the tracking. 

 

4. Comparison with Monte Carlo Tracker and GVF Snake Tracker 

We will evaluate the performance our proposed particle filter with feedback tracker (PFF) with 

those of the Monte Carlo (MC) tracker and the GVF snake tracker on 30 sequences. Each 

sequence consists of 90 frames. This comparison will show the superior performance of the PFF 

tracker both in terms of tracking accuracy and tracking speed.  The drastically reduced time 

required by the PFF tracker makes real-time tracking possible. 

All simulations were carried out in Matlab 7.1.0.246 (R14) on PC with an Intel Core 2 CPU 

2GHz and 1GB RAM. Each tracker is evaluated in the following three aspects. 

(1) Percentage of the frames tracked. 

(2) Number of sequences (out of 30 sequences) with all frames tracked 
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(3) Time taken to process each sequence. 

Shown in Fig. 4 is the comparison of percentage of frames tracks. As seen in the figure, with 

registration, the PFF tracker tracks 16% more frames than the MC tracker, and 18% more frames 

than the GVF snake tracker. Without registration, the performance of the PFF tracker remains 

almost the same, while the performances of the MC tracker and the GVF snake tracker degrade 

drastically. This indicates that the PFF tracker is not only much more accurate but also much 

more robust. 
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Fig. 4. Percentage of the frames tracked. 

Shown in Fig. 5 is the number of sequences (out of 30 sequences) with all 90 frames tracked, 

both with and without registration. With registration, the PFF tracker is able to track all 90 

frames in 23 out of 30 sequences, the MC tracker is able to track all 90 frames in 18 sequences 

and the GVF snake tracker is able to track all 90 frames only in 14 out of 30 sequences. Without 

registration, the number of sequences with all 90 frames tracked remains the same, while this 

number for the GVF snake tracker decreases to 1/3 and the number for the MC tracker decreases 

to 1/2. 
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Fig. 5.  Number of sequences (out of 30 sequences) with all 90 frames tracked. 

Shown in Fig. 6 are the differences in numbers of frames tracked by the three different trackers for 

each of the 30 sequences. The top two graphs show that the MC tracker and GVF tracker 

outperform each other in about the same number of sequences and by about a same margin. The 

middle two plots show that the PFF tracker drastically outperforms the GVF snake tracker. In 

particular, with registration, in only two of the 30 sequences does the GVF snake tracker track a 

few more frames than the PFF tracker. On the other hand, there are 8 sequences in which the PFF 

tracker tracks over 40 more frames than the GVF snake tracker, and in another two sequences, the 
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PFF tracker tracks 20 more frames than the GVF snake tracker. Without registration, the PFF 

tracker outperforms the MC tracker and the GVF snake tracker even more drastically. The bottom 

two plots show that the PFF tracker also outperforms the MC tracker by a similar margin as it 

outperforms the GVF snake tracker. 

Shown in Fig. 7 is the average time required for computation in each sequence. In measuring 

these times, the times used to read data from the hard disk is not included. As seen in Fig. 7, the 

PFF tracker is about 34 times faster than the GVF snake tracker and over 56 times faster than the 

MC tracker. 

In order to compare in relatively fair manner, the main time-consuming part of the algorithms 

should all be written in a same programming language. We have chosen C.  The main codes of 

both the MC tracker and the PFF tracker were written in C. The available GVF snake tracker is 

in the form of m-files (gvf.m and movesnake.m), which requires an average of 15.2683 seconds 

to track a sequence. The most time-consuming code in GVF snake tracker is the GVF algorithm. 

When we replaced gvf.m by a C code, gvf.c, found at http://www.iacl.ece.jhu.edu/resources/, the 

required time decreases to 5.24 seconds. We have also rewritten movesnake.m into movesnake.c. 

Using both gvf.c and movesnake.c, the required time further decreases to 3.14 seconds (see Fig. 

8). The time for the GVF tracker as shown in Fig. 6 for comparison is this further reduced time 

of 3.14 seconds. 
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Fig. 6. The differences in numbers of frames tracked by three different trackers for each of 

the 30 sequences. 
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Fig. 7. Average time required for tracking in each sequence. 
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Fig. 8. Average time per sequence required by the GVF snake tracker with different codes. 

 

5. Multiple Target Tracking 

The PFF tracker is also effective in tracking multiple targets. Shown in Fig. 9 is the performance 

of the PFF tracker in tracking 8 UAVs in a video sequence. The PFF tracker tracks all 8 targets. 

On the other hand, the MC tracker tracks only 6 targets, and misses 2 targets. More specifically, 

it tracks target #7 in 32 frames out of the 79 frames, and tracks target #8 in 49 frames out of 150 

frames.  The GVF tracker has similar performance as the MC tracker. It tracks 6 targets, and 

misses 2 targets (track target #5 in 46 frames out of the 100 frames, and tracks target #8 in 49 

frames out of 150 frames).  We observe that both the GVF and MC trackers miss targets when 

targets pass under the tree or are close to road side. 

Shown in Fig. 10 is the tracking speeds of all three trackers, indicating the superior performance 

of the PFF tracker. 
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Frame #   1 Frame #  31 Frame #  61

Frame #  91 Frame # 121 Frame # 151

 

Fig. 9.  The PFF tracker tracks all 8 targets in a 5 second segment of a typical UAV video 
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Fig. 10. Time required in tracking. 
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